

GRU Electric Integrated Resource Plan (IRP) – Part 1 Executive Summary

IRP Process Overview

1. IRP Goals	2. Inputs & Assumptions	3. Resource Needs	4. Evaluate Alternatives	5. Develop Preferred Plan	6. Implement Preferred Plan (Action Steps)
 -Set primary goals for IRP -What do you want to accomplish? -Develop an actionable, cost- effective plan to meet future electric needs 	 -Build model to accurately reflect current GRU system: Plant capacities Unit Performance Costs (Fixed and Variable O&M) -Input Forecasts: System Load Fuel Prices Financial (interest, inflation, etc.) -Describe New Resource Options: Capital Costs Operating Costs Performance Details 	 PLEXOS Model: Input allowances and constraints that account for real world Evaluates gaps in required generation capacity Fills gaps by providing resource portfolio with the lowest life-cycle costs Chronological listing of resource additions This resource mix becomes the baseline against which all others are compared 	 -Multiple scenarios and sensitivities are run through the model -Outputs are compared against the baseline for resource mix changes and cost changes -Evaluation and comparison of differing outputs yields valuable insights 	After PLEXOS model is complete: •GRU team weighs the performance of a given model output against a variety of futures •Many factors are reviewed including: •Cost •Organization Financial Constraints •Reliability •Technology advantages •Timing •GRU teams builds a preferred resource plan that is technically and economically feasible for the organization •Preferred Plan is brought to board for input and approval	 -Develop and execute steps to implement Preferred Plan -Action Steps could include (among others): •Developing technical equipment specifications •Engineering and Equipment Vendor RFPs •Construction •Executing Purchase Power Agreements

GRU's Electric Service Territory

Peak Load Variation

How GRU Manages Its Energy Portfolio

Balanced, diverse, economic portfolio ensures power needs met reliably and cost effectively

- Baseload and Intermediate Units
 - Relatively higher efficiency
 - Slow start-up and shut-down times
- Firming (Peaking) Units
 - Lower efficiency
 - Fast start
- Intermittent (solar)
 - Take power when it is generated
- Power Trading

Overview of GRU Energy Supply

Plant	Unit Number	Fuel Types	Expected Retirement	Contribution to Summer Peak Demand (MW)
John R. Kelly	CC1	Natural Gas	12/2051	112
Deerhaven	DH1	Natural Gas / #6 oil	*12/2027	76
Deerhaven	DH2	Natural Gas / coal	12/2031	232
Deerhaven	CT1	Natural Gas / diesel	*12/2026	17.5
Deerhaven	CT2	Natural Gas / diesel	*12/2026	17.5
Deerhaven	CT3	Natural Gas	12/2046	71
South Energy Center	SEC1	Natural Gas	12/2039	3.8
South Energy Center	SEC2	Natural Gas	12/2047	7.4
Deerhaven Renewables	DHR	Biomass	12/2043	102.5
Sand Bluff Solar	-	-	12/2044	27

*Unit expected to retire in next 5 years

- GRU is a "Balancing Authority"
 - 60 balancing authorities in US
 - Monitor power load and supply to ensure continuous balance
 - Start, stop, "ramp up", or "ramp down" generating units
 - Import or export power from grid Power Trading
- The owner of the load is responsible for balancing
 - Load = Customers
 - Load Balancing
 - Can be done by the owner
 - Can be outsourced to another vendor at the cost of the owner

E Load Balancing

Buying & Selling Power (continued)

Example: 50 MW (Peak) Dispatchable PPA in 2028

Size (MW)		50
Capacity Factor		50%
Annual Energy (MWh)		219,000
Capacity (\$/kW-month)	\$	7.28
Variable O&M (\$/MWh)	\$	1.68
Heat Rate (Btu/kWh)		7,000
Delivered Natural Gas Cost (\$/MMBtu)	\$	4.87
Gas Capacity Reservation Charge (\$/MN	1Btu) \$	0.62
Total Natural Gas Cost (\$/MMBtu)	\$	5.49
Wheeling Cost (\$/kW-month)*	\$	2.99
Annual Capacity Cost (\$)	\$	4,369,611
Annual Variable O&M Cost (\$)	\$	368,056
Annual Fuel Cost (\$)	\$	8,416,170
Annual Wheeling Cost (\$)	\$	1,794,000
Total Cost	\$	14,947,837
Total Cost per MWh	\$	68.25

*Wheeling charges for the IRP were based upon FPL's tariffed transmission rate in 2023 of \$2.67/kW-month. FPL increased this rate to \$3.77/kW-month on 1/1/24. Escalated at 2.3% per year through 2028 for this example, this charge would be \$4.13/kW-month, or an annual cost increase of \$684,000.

- Assessment of future energy needs
- Evaluation of energy supply portfolios for meeting those needs
 - Reliable and compliant with all applicable regulations
 - Cost-Effective
 - Mitigate risks
- Plan satisfies energy needs over 25+ year horizon
- Road map for decision making
 - Drives actionable decisions over next ~5 years
- Industry Best Practice
 - Typically conducted every ~3-5 years
 - Reflect changes in technology, costs, industry trends, etc.

- Assumed GRU will be the power provider
 - Generated
 - Purchased
- Baseline is best estimate of future conditions
 - Minimal constraints
 - Not based on net-zero resolution
- Only 1 sensitivity has net-zero resolution
- All sensitivities and scenarios look at the lowest cost

- Several Deerhaven units nearing end-of-life
 - Additional resources needed to meet demands and comply with NERC standards
- Energy resource portfolio must be reliable, operable, and meet all regulatory standards
 - Meet peak demand with largest unit out of service "N-1" (NERC-TPL-001-4)
- Rate and debt concerns
- Lower fuel and O&M costs with newer units and technologies
- Evolving technologies
 - Plan must be based on commercially available technologies but allow flexibility for future technology shifts

PLEXOS Model

Energy Demand

- Peak demand
- Energy
- Hourly demand over year

Resource Alternatives

- Capital costs
- Fixed & Variable O&M costs

12

- Heat rates
- Dispatchability

Energy Costs

- Fuel prices
- PPA costs

•

- Transmissio
 n costs
- Financial

 Inflation

 - rate
- Bond rate
- Discount rate

Constraints

- Reliability
- Plant retirements
- Transmission capacity
- Operability
- Other scenario/sensitivityspecific

Outputs

- Lowest lifecycle cost portfolio
- Timeline for resource additions
- Emissions

- NPV used to compare lifecycle costs
- Industry standard metric evaluating cash flows over the lifetime of an investment
- Captures costs of serving energy requirements over the IRP study period (through 2050)
- Accounts for time value of money by applying a "discount rate" to future investments
- Allows comparison of alternatives with different cash flows

Thank you!

CONTACT US

https://www.gru.com

Appendix

CONTACT US

https://www.gru.com

Part I: Background Information

- Electricity Basics
- Bulk Electric System (BES) Overview
- How Power is Produced
- Overview of GRU Energy Supply (Generating Units)
- Overview of GRU Energy Delivery (Transmission Assets)
- Load Balancing
- Buying and Selling Power
- IRP Process
- GRU Stakeholder and Community Engagement Approach

Part: II: Preliminary IRP Results

Outline

Electricity Basics

Demand (Power)

- Watt = unit of power
- 1 Kilowatt (kW) = 1,000 Watts
- 1 Megawatt (MW) = 1 Million Watts
- GRU peak demand (2023) = 409 MW

Energy (Power Consumed)

- Kilowatt hour (kWh) = kW x hours
- Average residential customer uses ~850 kWh/month
- GRU supplies total of 2 Million MWh of electricity/year

Bulk Electric System (BES) Overview

How Power is Produced

- Fuel Types
 - Natural Gas
 - Liquid Fuels (diesel, #6 fuel oil, etc.)
 - Coal
 - Biomass
 - Other (nuclear, hydrogen, etc.)
- Generation Types
 - Conventional steam turbine
 - Combustion turbine (CT)
 - Reciprocating Internal Combustion Engine (RICE)
 - Combined-Cycle (combustion turbine w/ steam turbine)
 - Utility-scale Solar
 - Other (wind, hydro, nuclear, geothermal)

Overview of GRU Energy Supply

Plant	Unit Number	Fuel Types	Expected Retirement	Contribution to Summer Peak Demand (MW)
John R. Kelly	CC1	Natural Gas	12/2051	112
Deerhaven	DH1	Natural Gas / #6 oil	*12/2027	76
Deerhaven	DH2	Natural Gas / coal	12/2031	232
Deerhaven	CT1	Natural Gas / diesel	*12/2026	17.5
Deerhaven	CT2	Natural Gas / diesel	*12/2026	17.5
Deerhaven	CT3	Natural Gas	12/2046	71
South Energy Center	SEC1	Natural Gas	12/2039	3.8
South Energy Center	SEC2	Natural Gas	12/2047	7.4
Deerhaven Renewables	DHR	Biomass	12/2043	102.5
Sand Bluff Solar	-	-	12/2044	27

*Unit expected to retire in next 5 years

Generation Types Modeled in IRP

	Supply-Side Resource	Description	Finance Period Years	Max. Capacity Summer Net MW	Net Full Load Heat Rate Summer Btu/kWh	Capital Costs 2023 \$, Millions	Capital Costs 2023 \$ per kW, Summer
		NGCC - Siemens SGT-800 1x1	30	74.7	7,172	\$162.3	\$2,173
	Combined Cycle Combustion Turbine	NGCC - Siemens SGT-800 2x1	30	143.5	7,172	\$320.9	\$2,236
		NGCC - Siemens SGT-800 3x1	30	224.0	7,172	\$471.7	\$2,106
		Kelly Inlet Air Chilling	20	10.0	N/A	\$10.5	\$1,051
	Simple Cycle Combustion Turbine	Siemens SGT-800	30	52.4	9,818	\$83.9	\$1,601
		3 x Solar Titan 250	30	52.6	10,851	\$97.2	\$1,849
		1 x Solar Titan 250	30	17.5	10,851	\$32.4	\$1,849
ed		1 x Solar Titan 350	30	29.5	10,619	\$41.3	\$1,401
U Own		2 x General Electric LM2500+G4	30	55.9	10,358	\$123.7	\$2,213
GR	Reciprocating Internal	RICE - MAN 3x20 MW	30	59.0	8,680	\$94.7	\$1,605
	Combustion Engine	RICE - MAN 1x20 MW	30	19.7	8,680	\$31.6	\$1,605
	Nuclear[(Small Modular Reactors (SMR)]	Participant in 600 MW SMR project	40	100.0	10,447	\$865.3	\$8,653
	Biomass	Steam Turbine Fueled with Urban Waste Wood	30	30.0	13,500	\$155.4	\$5,180

GRU's Electric Service Territory

Overview of GRU Energy Delivery (Transmission Assets)

- 230 kV radial and a 138 kV loop connecting the following:
 - 3 primary generating stations
 - 11 distribution substations
 - 1x 230 kV and 1x 69 kV tie with Duke Energy Florida (DEF)
 - 138 kV intertie with Florida Power and Light Company (FPL)
 - Interconnection with Clay at Farnsworth Substation
 - Interconnection with the City of Alachua at Alachua No. 1 Substation

How GRU Manages Its Energy Portfolio

Balanced, diverse, economic portfolio ensures power needs met reliably and cost effectively

- Baseload and Intermediate Units
 - Relatively higher efficiency
 - Slow start-up and shut-down times
- Firming (Peaking) Units
 - Lower efficiency
 - Fast start
- Intermittent (solar)
 - Take power when it is generated
- Power Trading

- Natural gas curtailment periods
- Variable weather conditions
- Planned and unplanned outages

Regulatory Requirements

- North American Energy Reliability Corporation (NERC)
- Florida Energy Regulatory Commission (FERC)
- Florida Reliability Coordinating Council, Inc. (FRCC)

NERC

- Strict standards governing reliability & security (including cybersecurity)
- Reporting and audits to verify compliance

E Load Balancing

- GRU is a "Balancing Authority"
 - 60 balancing authorities in US
 - Monitor power load and supply to ensure continuous balance
 - Start, stop, "ramp up", or "ramp down" generating units
 - Import or export power from grid Power Trading
- The owner of the load is responsible for balancing
 - Load = Customers
 - Load Balancing
 - Can be done by the owner
 - Can be outsourced to another vendor at the cost of the owner

E Load Balancing

Peak Load Variation

- Buying & Selling Power
 - GRU has transmission ties with FPL & Duke
 - GRU purchases and sells power over these ties
 - GRU purchases and sells power from utilities across the southeast
 - GRU participates in multiple power markets
 - Southeast Energy Exchange Market (SEEM): 15-minute intervals
 - Hourly market
 - Day-ahead market
 - Special short-term (a week or more) deals (outages, economic opportunities, etc.)
 - Long-term contracts (PPAs) (Winter Park, Alachua, Seminole, etc.)

- Transmission lines have limits over how much they can move
 - Transmission availability can vary hour-to-hour
 - Transmission can be reserved for long-term deals (if available)
- Transmission rates or "wheeling charges"
 - Charges associated with transferring purchased power over someone else's transmission lines
 - Rates are governed by the PSC and are nonnegotiable

Buying & Selling

Power (continued)

Buying & Selling Power (continued)

Long-term Power Purchases (PPAs)

- Typically consist of capacity, non-fuel variable O&M, and fuel charges
 - Capacity and O&M charges can be fixed or escalating
 - Fuel charges are pegged to a heat rate (generating unit efficiency) and the delivered cost of natural gas each month
- Wheeling costs are additional and cumulative for the transmission systems the power flows across

Buying & Selling Power (continued)

Example: 50 MW (Peak) Dispatchable PPA in 2028

Size (MW)			50
Capacity Factor			50%
Annual Energy (MWh)			219,000
Capacity (\$/kW-month)		\$	7.28
Variable O&M (\$/MWh)		\$	1.68
Heat Rate (Btu/kWh)			7,000
Delivered Natural Gas Cost (\$/	MMBtu)	\$	4.87
Gas Capacity Reservation Charg	ge (\$/MMBtu)	\$	0.62
Total Natural Gas Cost (\$/MMBtu)			5.49
Wheeling Cost (\$/kW-month)*		\$	2.99
Annual Capacity Cost (\$)		\$	4,369,611
Annual Variable O&M Cost (\$)		\$	368,056
Annual Fuel Cost (\$)		\$	8,416,170
Annual Wheeling Cost (\$)		\$	1,794,000
Total Cost		\$2	14,947,837
Total Cost per MWh		\$	68.25

*Wheeling charges for the IRP were based upon FPL's tariffed transmission rate in 2023 of \$2.67/kW-month. FPL increased this rate to \$3.77/kW-month on 1/1/24. Escalated at 2.3% per year through 2028 for this example, this charge would be \$4.13/kW-month, or an annual cost increase of \$684,000.

- Assessment of future energy needs
- Evaluation of energy supply portfolios for meeting those needs
 - Reliable and compliant with all applicable regulations
 - Cost-Effective
 - Mitigate risks
- Plan satisfies energy needs over 25+ year horizon
- Road map for decision making
 - Drives actionable decisions over next ~5 years
- Industry Best Practice
 - Typically conducted every ~3-5 years
 - Reflect changes in technology, costs, industry trends, etc.

- Assumed GRU will be the power provider
 - Generated
 - Purchased
- Baseline is best estimate of future conditions
 - Minimal constraints
 - Not based on net-zero resolution
- Only 1 sensitivity has net-zero resolution
- All sensitivities and scenarios look at the lowest cost

- Several Deerhaven units nearing end-of-life
 - Additional resources needed to meet demands and comply with NERC standards
- Energy resource portfolio must be reliable, operable, and meet all regulatory standards
 - Meet peak demand with largest unit out of service "N-1" (NERC-TPL-001-4)
- Rate and debt concerns
- Lower fuel and O&M costs with newer units and technologies
- Evolving technologies
 - Plan must be based on commercially available technologies but allow flexibility for future technology shifts

IRP Technical Team

- The Energy Authority (TEA) performing technical analysis
 - Input from GRU technical staff and 3rd party consultant, nFront Consulting
- TEA is a non-profit corporation that works on behalf of public power and other community owned organizations in the power and natural gas markets
 - Over 50 public power clients
 - GRU is 1 of 7 TEA owners, joining in 1999
 - GRU's CEO/GM is a Board member of TEA

- IRP Technical Team (continued)
- GRU utilizes many of TEA's services, including:
 - Bilateral energy trading
 - Natural gas trading
 - Portfolio management
 - Risk management
 - Advisory services
- TEA has completed over 20 IRPs for other municipal utilities
 - TEA worked with GRU to complete its 2016 and 2019 IRPs
- NFront Consulting
 - Electric Power industry planning services
 - Numerous IRPs for various sized municipal electric utilities
 - Assisting in stakeholder engagement

PLEXOS Model

Energy Demand

- Peak demand
- Energy
- Hourly demand over year

Resource Alternatives

- Capital costs
- Fixed & Variable O&M costs

38

- Heat rates
- Dispatchability

Energy Costs

- Fuel prices
- PPA costs

•

- Transmissio
 n costs
- Financial

 Inflation
 - Inflation
 - rate
- Bond rate
- Discount rate

Constraints

- Reliability
- Plant retirements
- Transmission capacity
- Operability
- Other scenario/sensitivityspecific

Outputs

- Lowest lifecycle cost portfolio
- Timeline for resource additions
- Emissions

Information Sources for Inputs to IRP

Ξ	nergy Demand	Resource Alternatives	E	nergy Costs	F	nancial
•	Peak demand	 Capital costs 	•	Fuel prices	•	Inflation
•	Energy	Fixed & Variable O&M	•	PPA costs		rate
•	Hourly	costs	•	Transmissio	•	Bond rate
	demand over	 Heat rates 		n costs	•	Discount
	year	 Dispatchability 				rate

39

UF Bureau of Economic and Business Research UNIVERSITY of FLORIDA

Sargent & Lundy

S&P Global Commodity Insights

IRP Process (continued)

- PLEXOS
 - Specialized software used for IRP analysis
 - Applies mixed integer programming to perform multi-operational decision optimization
 - Replicates actual electric system operation with all technical constraints modeled and obeyed
 - Solves for the lowest life-cycle cost resource portfolio that meets demand and energy needs on an hourly basis
 - NERC regulations for reliability and reserve margin must be met
- Considers all costs for each resource portfolio option
 - Capital Outlays
 - Fixed and variable O&M
 - Fuel costs
 - PPA costs
 - Firming power required for utility scale solar

IRP Process (continued)

- Baseline
 - Model inputs based on most likely anticipated future based on industry forecasts
 - PLEXOS solves for lowest lifecycle cost portfolio that meets energy needs
- Multiple "Scenarios" and "Sensitivities" also evaluated to account for other possible futures
 - 19 scenarios and sensitivities modeled
 - Achieving 2045 net-zero carbon emission per 2018 City Commission Resolution was only one of 15 sensitivities modeled (not part of the baseline)
- IRP provides a robust preferred resource plan that will mitigate risks across multiple futures and fit within debt defeasance plan

- NPV used to compare lifecycle costs
- Industry standard metric evaluating cash flows over the lifetime of an investment
- Captures costs of serving energy requirements over the IRP study period (through 2050)
- Accounts for time value of money by applying a "discount rate" to future investments
- Allows comparison of alternatives with different cash flows

GRU Stakeholder and Community Engagement Approach

- Purpose
 - Educate and get input from broad cross-section of stakeholders with various interests
 - Business
 - Low Income customers
 - Environmental & civic
- Industry Best Practice
 - Facilitate buy-in of final plan
- Stakeholder Engagement/Public Outreach Team
 - Acuity Design Group (ADG)
 - nFront Consulting
 - TEA
 - GRU Staff
- Stakeholder Advisory Group
 - Initiated March 2023
 - Diverse group representing cross-section of interests and perspectives
 - 6 stakeholder technical meetings
- Community Engagement Meetings
 - 6 Meetings

GRU Stakeholder and Community Engagement Approach

- Preliminary IRP Results February 7
- Development of Preferred Resource Plan
 - Develop Internally
 - January March
- Proposed Preferred Resource Plan to GRUA April 17
- Final Stakeholder Advisory Group and Community Meetings – May

ENext Steps